Abstract
Automated-detecting intelligent programs and methods are developing to find out diseases in medicine in recent years. Developing new methods and improving existing ones are currently ongoing research. One of the most important health problems is heart diseases for all people in the world. Electrocardiography (ECG) is a diagnosis tool that gives substantially functional information about heart and cardiac system. In this work, it is primarily aimed at developing an intelligent system based on ECG signal processing, analysis, and classification via a hybrid machine learning model. This work uses 837 ECG signal fragments that includes 7 different classes shared in MIT-BIH Arrhythmia database for one lead. The ECG signals are applied on a preprocessing to smooth signals and correct baselines. Q, R and S waves (QRS) complex on ECG signals are segmented based on k-means clustering and tracking local extrema points. Feature extraction and selection are then performed, and a dataset is created by calculating measurement parameters for each QRS points separately. Training sets and test sets based on 8-fold cross validation are generated. A hybrid model based on machine learning models including decision tree (DT), k-nearest neighbor (KNN), random forest (RF), naive bayes (NB), linear discriminant analysis (LDA), support vector machines (SVM) and quadratic discriminant analysis (QDA) is developed to classify cardiovascular diseases (CVD) into 7 different classes such as normal sinus rhythm (NSR), atrial premature beat (APB), atrial fibrillation (AFIB), premature ventricular contraction (PVC), ventricular bigeminy (VB), left bundle branch block beat (LBBBB) and right bundle branch block beat (RBBBB). Sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of detection of QRS complex are obtained respectively as 94.75%, 95.96%, 95.57% and 0.90. Sensitivity, specificity, accuracy and MCC of classification of CVD classes are obtained respectively as 92.33%, 92.50%, 92.41%, 0.85.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Systems and Applications in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.