Abstract

Colloids and suspensions are part of our daily routines. Even the blood is considered a “naturally” occurring colloid. However, the majority of colloids are complex and composed by a diversity of nano to microparticles. The characterization of both synthetic and physiological fluids in terms of particulate types, size and surface characteristics plays a vital role in products formulation, and in the early diagnosis through the identification of abnormal scatterers in physiological fluids, respectively. Several methods have been proposed for characterizing suspensions, including imaging, electrical sensing counters, hydrodynamic or field flow fractionation. However, the Dynamic Light Scattering (DLS) has evolved as the most convenient method from these. Based also on the scattering signal, we propose a novel, simple and fast method able to determine the number of different scatterers type present in a suspension, without any previous information about its composition (in terms of particle classes). This is achieved by collecting features from a 980 nm laser back-scattered signal acquired through a polymeric lensed optical fiber tip dipped into the solution. Unlike DLS, this technique allows the trapping of particles whose diameter ≥ 1 μm. For smaller particles, despite not guaranteeing their immobilization, it is also able to determine the number of different nanoparticles classes in an ensemble. The number of particle types was correctly determined for suspensions of synthetic particles and yeasts; different bacteria; and 100 nm nanoparticles types, using both Principal Component Analysis and K-means algorithms. This method could be a valuable alternative to complex and time-consuming methods for particles separation, such as field flow fractionation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.