Abstract

During the forming process of the free-standing structure or the functional cavity when releasing the high aspect ratio sacrificial layer, such structures tend to stick to the substrate due to capillary force. This paper describes the application of pull-in length conception as design rules to a novel ‘dimpled’ method in releasing sacrificial layer. Based on the conception of pull-in length in adhering phenomenon, the fabrication and releasing sacrificial layer methods using micro bumps based on the silicon substrate were presented. According to the thermal isolation performances of one kind of micro electromechanical system device thermal shear stress sensor, the sacrificial layers were validated to be successfully released.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.