Abstract
Fault diagnosis is one of the important applications of edge computing in the Industrial Internet of Things (IIoT). To address the issue that traditional fault diagnosis methods often struggle to effectively extract fault features, this paper proposes a novel rolling bearing fault diagnosis method that integrates Gramian Angular Field (GAF), Convolutional Neural Network (CNN), and Vision Transformer (ViT). First, GAF is used to convert one-dimensional vibration signals from sensors into two-dimensional images, effectively retaining the fault features of the vibration signal. Then, the CNN branch is used to extract the local features of the image, which are combined with the global features extracted by the ViT branch to diagnose the bearing fault. The effectiveness of this method is validated with two datasets. Experimental results show that the proposed method achieves average accuracies of 99.79% and 99.63% on the CWRU and XJTU-SY rolling bearing fault datasets, respectively. Compared with several widely used fault diagnosis methods, the proposed method achieves higher accuracy for different fault classifications, providing reliable technical support for performing complex fault diagnosis on edge devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.