Abstract

A novel method of measurement of the very low wear-rates of materials in the ultra-mild wear regime, which involves the use of implanted gold as a marker, was used to understand the effects of surface roughness and roughness orientation on wear under reciprocating sliding conditions. AISI 1095 steel coupons with various Vickers hardness values and different surface roughness and roughness orientation relative to the sliding direction were tested under the same sliding conditions. It was found that parallel sliding causes more wear compared with transverse sliding for the harder samples (Vickers hardness (VH); 450 HV, 650 HV and 1000 HV). Furthermore, the average friction coefficient of parallel sliding is also higher than that of transverse sliding for these samples. Severe wear takes place when the samples are too soft (250 HV), resulting in the complete loss of implanted gold. Surface topographic images were taken before and after the wear tests. It was found that parallel sliding dramatically increases the surface roughness, while transverse sliding does not increase the surface roughness for harder samples (450 HV, 650 HV and 1000 HV). For the soft sample (250 HV), the surface roughness increases significantly under parallel or transverse sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.