Abstract

BackgroundIn the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. This work presents a novel prokaryotic promoter prediction method based on DNA stability.ResultsThe promoter region is less stable and hence more prone to melting as compared to other genomic regions. Our analysis shows that a method of promoter prediction based on the differences in the stability of DNA sequences in the promoter and non-promoter region works much better compared to existing prokaryotic promoter prediction programs, which are based on sequence motif searches. At present the method works optimally for genomes such as that of Escherichia coli, which have near 50 % G+C composition and also performs satisfactorily in case of other prokaryotic promoters.ConclusionsOur analysis clearly shows that the change in stability of DNA seems to provide a much better clue than usual sequence motifs, such as Pribnow box and -35 sequence, for differentiating promoter region from non-promoter regions. To a certain extent, it is more general and is likely to be applicable across organisms. Hence incorporation of such features in addition to the signature motifs can greatly improve the presently available promoter prediction programs.

Highlights

  • In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation

  • We propose a prokaryotic promoter prediction method, which is based on the stability differences between promoter and non-promoter regions

  • It is interesting that the promoters from diverse bacteria, which have quite different genome composition (A+T composition: E. coli 0.49, B. subtilis 0.56 and C. glutamicum 0.46), show strikingly similar features

Read more

Summary

Introduction

In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. One of the biggest challenges is the task of gene prediction and to fulfil this need, several gene prediction programs have been developed (For reviews see [1,2,3,4,5]). Most of these prediction programs require training based on prior knowledge of sequence features such as codon bias, which in turn are organism specific. One of the important steps towards ab initio gene prediction is to develop better promoter and TSS (transcription start site) prediction methods

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.