Abstract

Accurately determining load model parameters is of the utmost importance for conducting power system simulation analysis and designing effective control strategies. Measurement-based approaches are commonly employed to identify load model parameters that closely reflect the actual operating conditions. However, these methods typically rely on iterative parameter search processes, which can be time-consuming, particularly when dealing with complex models. To address this challenge, this paper introduces a parameter identification method for the generalized synthetic load model (SLM) using the Extreme Learning Machine (ELM) technique, with the aim of enhancing computational efficiency. Furthermore, to achieve better alignment with load response curves, a Quantum Particle Swarm Optimization (QPSO) algorithm is adopted to train the ELM model. The proposed QPSO-ELM-based SLM parameter identification method is subsequently evaluated using a standard test system. To assess its effectiveness, parameter sensitivity analysis is performed, and simulation results are analyzed. The findings demonstrate that the proposed method yields favorable outcomes, offering improved computation efficiency in load model parameter identification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.