Abstract

A novel fault diagnosis method based on variational mode decomposition (VMD) and multikernel support vector machine (MKSVM) optimized by Immune Genetic Algorithm (IGA) is proposed to accurately and adaptively diagnose mechanical faults. First, mechanical fault vibration signals are decomposed into multiple Intrinsic Mode Functions (IMFs) by VMD. Then the features in time-frequency domain are extracted from IMFs to construct the feature sets of mixed domain. Next, Semisupervised Locally Linear Embedding (SS-LLE) is adopted for fusion and dimension reduction. The feature sets with reduced dimension are inputted to the IGA optimized MKSVM for failure mode identification. Theoretical analysis demonstrates that MKSVM can approximate any multivariable function. The global optimal parameter vector of MKSVM can be rapidly identified by IGA parameter optimization. The experiments of mechanical faults show that, compared to traditional fault diagnosis models, the proposed method significantly increases the diagnosis accuracy of mechanical faults and enhances the generalization of its application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.