Abstract

In order to mitigate the location ambiguity of radar signal in Low Earth Orbit (LEO) dual-satellite Time Difference Of Arrival (TDOA) location system, the ambiguous characteristics of high PRF signal are analyzed, the process of ghost location generating by ambiguous TDOA is introduced, and a method for location ambiguity mitigation by Variation Trendline Matching of TDOA (VTMT) is proposed. If the condition that the residuals between the measured TDOA series and the theoretical TDOA series corresponding to the positioning results approximately obey normal distribution is satisfied, the location where the measured TDOA line is closest to the theoretical TDOA line can be selected as the real position of radar emitter with the Euclidean distance being used to measure the similarity between the two series. Test signal of calibration station validates the effectiveness of the proposed method. Numerical simulations demonstrate that the proposed method can increase the probability of unambiguous location significantly, reduce the requirements of TDOA measurement accuracy and observation time. The proposed method has good prospect for applications to TDOA location of radar signal in long base line location systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call