Abstract
The aim of the perspective-three-point (P3P) problem is to estimate extrinsic parameters of a camera from three 2D–3D point correspondences, including the orientation and position information. All the P3P solvers have a multi-solution phenomenon that is up to four solutions and needs a fully calibrated camera. In contrast, in this paper we propose a novel method for intrinsic and extrinsic parameter estimation based on three 2D–3D point correspondences with known camera position. Our core contribution is to build a new, virtual camera system whose frame and image plane are defined by the original 3D points, to build a new, intermediate world frame by the original image plane and the original 2D image points, and convert our problem to a P3P problem. Then, the intrinsic and extrinsic parameter estimation is to solve frame transformation and the P3P problem. Lastly, we solve the multi-solution problem by image resolution. Experimental results show its accuracy, numerical stability and uniqueness of the solution for intrinsic and extrinsic parameter estimation in synthetic data and real images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.