Abstract

In intensity-modulated radiation therapy (IMRT), 3D in-room imaging data is typically utilized for accurate patient alignment on the basis of anatomical landmarks. In the presence of non-rigid anatomical changes, it is often not obvious which patient position is most suitable. Thus, dose-guided patient alignment is an interesting approach to use available in-room imaging data for up-to-date dose calculation, aimed at finding the position that yields the optimal dose distribution.This contribution presents the first implementation of dose-guided patient alignment as multi-criteria optimization problem. User-defined clinical objectives are employed for setting up a multi-objective problem. Using pre-calculated dose distributions at a limited number of patient shifts and dose interpolation, a continuous space of Pareto-efficient patient shifts becomes accessible. Pareto sliders facilitate interactive browsing of the possible shifts with real-time dose display to the user. Dose interpolation accuracy is validated and the potential of multi-objective dose-guided positioning demonstrated for three head and neck (H&N) and three prostate cancer patients. Dose-guided positioning is compared to replanning for all cases. A delineated replanning CT served as surrogate for in-room imaging data.Dose interpolation accuracy was high. Using a dose difference criterion, a median pass-rate of 95.7% for H&N and 99.6% for prostate cases was determined in a comparison to exact dose calculations. For all patients, dose-guided positioning allowed to find a clinically preferable dose distribution compared to bony anatomy based alignment. For all H&N cases, mean dose to the spared parotid glands was below (up to with bony alignment) and clinical target volume (CTV) above 99.1% (compared to 95.1%). For all prostate patients, CTV was above 98.9% (compared to 88.5%) and to the rectum below (compared to 56.1%). Replanning yielded improved results for the H&N cases. For the prostate cases, differences to dose-guided positioning were minor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call