Abstract

Applicability of electrokinetic effect in improving water injectivity in tight sandstone is studied. DC potential and injection rate are varied for optimization and determination of their individual impact on clay discharge and movement. The liberated clays were characterized through size exclusion microfiltration and ICP-MS analysis. Real time temperature and pH monitoring were also informative. Results showed that severalfold (up to 152%) apparent increase of core permeability could be achieved. Some of the experiments were more efficient in terms of dislodgement of clays and enhanced stimulation which is supported by produced brines analysis with higher concentration of clay element. The results also showed larger quantity of clays in the produced brine in the initial periods of water injection followed by stabilization of differential pressure and electrical current, implying that the stimulation effect stops when the higher voltage gradient and flow rates are no more able to dislodge remaining clays. Additionally, fluid temperature measurement showed an increasing trend with the injection time and direct proportionality with the applied voltage. The basic theory behind this stimulation effect is predicted to be the colloidal movement of pore lining clays that results in widening of pore throats and/or opening new flow paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.