Abstract

A novel method of aero-engine rubbing positions identification based on cepstrum analysis is proposed, and the transfer path characteristics which reflect the transfer characteristics information from rubbing points to casing measuring points are separated from the vibration acceleration signals of casing by means of cepstrum analysis. Therefore, there is different transfer characteristics information at different rubbing positions, and in view of this, twenty rubbing positions identification features from the cepstrum are extracted. A large number of rubbing experiments of different positions are simulated with the rotor experiment rig of aero-engine, and the characteristic analysis of experimental samples at different rubbing positions is carried out, and the results indicate the consistency of features to the same rubbing position and the difference of the features to the different rubbing positions. Finally, the aero-engine rubbing positions identification is carried out using the nearest neighbor classification method, the recognition rate reaches 100%, and the effectiveness of the method is full verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.