Abstract
Climate change is one of the biggest challenges today. An increasing population accelerates the construction of concrete houses and the use of air conditioners, thereby leading to an increase in energy consumption. When the walls of buildings are well-designed and insulated, energy consumption can be reduced. Therefore, it is important to measure the thermal performance of wall systems accurately. The existing traditional methods of measuring R- and U-values provide acceptable solutions for steady-state controlled, uncontrolled or transient state-controlled conditions. However, a need to develop a novel approach for transient state-uncontrolled realistic conditions has been identified. The present study involves both experimental and numerical investigations. An in situ model room with dimensions of 1.60 m × 1.73 m × 1.50 m was built for the experimental work, and a series of experiments were conducted. For numerical work, two models using Ansys Fluent 2021/2022 and MATLAB Simulink 2021/2022 were developed. The real-time experimental data were fed into numerical models to predict the thermal behavior of the wall system. The results include the evaluation of a concept called ‘Time-Lag’ for all three models. ‘Time-Lag’ is the time taken for the heat energy to flow across the wall system. The Time-Lag for the experimental model was 8 h 45 min, while for MATLAB and Ansys models, it was 8 h 22 min. (average) and 7 h 30 min, respectively. Minor variations validate the accuracy of the numerical models. Further, a novel method using a new parameter in building systems called ‘thermal impedance Z-value’ was developed to estimate the real-time thermal performance of walls using MATLAB Simulink. The Z-value measures the ability of a wall system to resist the flow of heat (thermal resistance, R-value) combined with its ability to store heat energy (thermal capacitance, Cth-value). It is evaluated for steady-state and dynamic (transient) systems. For the steady-state system, the Z-values on the outer and inner walls were 18.2683 K/W and 18.6761 K/W, respectively with a minor difference of 0.4078 K/W at the end of 72 h. For the dynamic system, the Z-value did not reach a constant value and fluctuated in a particular pattern during 24 h of the solar cycle with average values of 3.2969 K/W on the outer and 1.2886 K/W on the inner walls at the end of 72 h, thus presenting more accurate and realistic thermal performance results of a wall system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.