Abstract

BackgroundEnumeration of circulating tumor cells (CTCs) obtained from minimally invasive blood samples has been well established as a valuable monitoring tool in metastatic and early breast cancer, as well as in several other cancer types. The gold standard technology for detecting CTCs in blood against a backdrop of millions of leukocytes is the FDA-approved CellSearch system (Janssen Diagnostics), which relies on EpCAM-based immunomagnetic separation. Secondary characterization of these cells could enable treatment selection based on specific targets in these cells, as well as providing a real time window into the metastatic process and offering unique insights into tumor heterogeneity. The objective of this study was to develop a method for downstream characterization of CTCs following isolation with the CellSearch system.MethodsAn in vitro CTC model system focusing on clinically useful treatment predictive biomarkers in breast cancer, specifically the estrogen receptor α (ERα) and the human epidermal growth factor receptor 2 (HER2), was established using healthy donor blood spiked with breast cancer cell lines MCF7 (ERα+/HER2−) and SKBr3 (ERα−/HER2+). Following CTC isolation by CellSearch, the captured CTCs were further enriched and fixed on a microscope slide using the in-house-developed CTC-DropMount technique.ResultsThe recovery rate of CTCs after CellSearch Profile analysis and CTC-DropMount was 87%. A selective and consistent triple-immunostaining protocol was optimized. Cells positive for DAPI, cytokeratin (CK) 8, 18 and 19, but negative for the leukocyte-specific marker CD45, were classified as CTCs and subsequently analyzed for ERα and HER2 expression. The method was verified in breast cancer patient samples, thus demonstrating its clinical relevance.ConclusionsOur results show that it is possible to ascertain the status of important predictive biomarkers expressed in breast cancer CTCs using the newly developed CTC-DropMount technique. Downstream characterization of multiple biomarkers using a standard fluorescence microscope demonstrates that important clinical and biological information may be obtained from a single patient blood sample following either CellSearch epithelial or profile analyses.Trial registrationClinical Trials NCT01322893

Highlights

  • Enumeration of circulating tumor cells (CTCs) obtained from minimally invasive blood samples has been well established as a valuable monitoring tool in metastatic and early breast cancer, as well as in several other cancer types

  • MCF7 cells were grown in a 5.0% CO2 incubator under UV-light at 37°C in culture vessels containing 5 mL MEM/EBSS (HyClone Laboratories, Inc., Utah, United States) medium supplemented with 1% sodium pyruvate, 1% non-essential amino acids, 10% fetal bovine serum (FBS) and 1% penicillin streptomycin mixture (Pen-Strep) for MCF7, and RPMI 1640 (HyClone Laboratories, Inc.), while SKBr3 cells were cultured under the same conditions in 5 mL MEM/EBSS plus 10% FBS and 1% Pen-Strep

  • Dilution of cells resulted in approximately 2000 cells per 7.5 ml blood, and using the CTC-DropMount technique, approximately 200 cells were applied to 10 individual slides, which were later used in the optimization of staining procedures

Read more

Summary

Introduction

Enumeration of circulating tumor cells (CTCs) obtained from minimally invasive blood samples has been well established as a valuable monitoring tool in metastatic and early breast cancer, as well as in several other cancer types. The gold standard technology for detecting CTCs in blood against a backdrop of millions of leukocytes is the FDA-approved CellSearch system (Janssen Diagnostics), which relies on EpCAM-based immunomagnetic separation. Secondary characterization of these cells could enable treatment selection based on specific targets in these cells, as well as providing a real time window into the metastatic process and offering unique insights into tumor heterogeneity. Serial blood sampling followed by molecular characterization can provide insights into tumor progression and enable early detection of treatment resistance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.