Abstract

AbstractThe R-peak detection is crucial in all kinds of electrocardiogram (ECG) applications. However, almost all existing R-peak detectors suffer from the non-stationarity of both QRS morphology and noise. To combat this difficulty, we propose a new R-peak detector, which is based on the new preprocessing technique and an automated peak-finding logic. In this paper, we first demonstrate that the proposed preprocessor with a Shannon energy envelope (SEE) estimator is better able to detect R-peaks in case of wider and small QRS complexes, negative QRS polarities, and sudden changes in QRS amplitudes over that using the absolute value, energy value, and Shannon entropy features. Then we justify the simplicity and robustness of the proposed peak-finding logic using the Hilbert-transform (HT) and moving average (MA) filter. The proposed R-peak detector is validated using the first-channel of the 48 ECG records of the MIT-BITH arrhythmia database, and achieves average detection accuracy of 99.80%, sensitivity of 99.93% and positive predictivity of 99.86%. Various experimental results show that the proposed R-peak detection method significantly outperforms other well-known methods in case of noisy or pathological signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.