Abstract
This is the study of relation between thermal and magnetic properties of permanent magnets. The concept of adiabatic demagnetization gives the basic idea on variation in temperature of paramagnetic substances due to the application of magnetic field. With the understanding of adiabatic demagnetization the variations in temperature of ferromagnetic materials can be explained. In both cases, adiabatic demagnetization tells us about conservation of energy. The study on thermal properties of ferromagnetic materials at cryogenic temperatures gives the amount of thermal energy being transferred from or to the surroundings and hence gives the variations in magnetic fields due to temperature changes. As samarium cobalt rare earth permanent magnet do quite well at cryogenic temperatures, this study is much useful in future applications of permanent magnets in space for a renewable energy source. This will enable us to look into the design and working of a device that can convert thermal energy to mechanical energy which leads to thinking of energy conversion without causing harm to our environment. Numerous research works report the successful use of samarium cobalt to temperatures as low as 2 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.