Abstract

Our goal was to present a novel non-invasive approach for assessment of aortic wall displacement to describe its biomechanical properties during the cardiac cycle. The fluid-structure interaction (FSI) technique was used to reconstruct aortic wall displacement based on computed tomography angiography and 2-dimensional speckle-tracking technique (2DSTT) data collected from 20 patients [10 with healthy aortas (AA) and 10 with abdominal aortic aneurysms (AAAs)]. The mechanical properties of the wall of the aorta were described by the Yeoh hyperelastic materials model with α and β parameters, and wall displacement was determined with 2DSTT. The mechanical parameters of the wall of the aorta in the FSI model were automatically updated in the calculation loop until the calculated and clinically measured wall movements were the same. Results showed 98% accuracy of FSI compared to 2DSTT for AA and AAA (P > 0.05). The mean wall deformation for AA was 2.45 ± 0.12 mm and 2.49 ± 0.10 mm for FSI and 2DSTT, respectively (P = 0.40), whereas that for AAA was 2.84 ± 0.44 mm and 2.88 ± 0.45 mm, respectively (P = 0.83). The FSI analysis indicated that the α and β parameters for AA were equal to 14.35 ± 1.30 N⋅cm-2 and 9.33 ± 1.08 N⋅cm-2, respectively; and for AAA, α was 11.00 ± 0.49 N⋅cm-2 and β was 79.46 ± 4.32 N⋅cm-2. The FSI technique may be successfully applied to assess the mechanical parameters of patient-specific aortic walls using computed tomography angiographic and 2DSTT measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.