Abstract

Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.

Highlights

  • It is known that free L-DOPA can induce oxidative stress, resulting in reactive oxygen species (ROS) generation via interaction with iron and copper to produce Fenton reaction products [27], which leads to further hydroxylation of free or protein incorporated tyrosine, thereby producing free and Protein-bound DOPA (PB-DOPA) [5,22]

  • The following reagents were sourced from Sigma-Aldrich (Saint Louis, MI, USA): L-DOPA (Cat #D9628); urea (Cat #U5378); thiourea (Cat #T7875); C7BzO (Cat #C0856); Dulbecco’s Modified Eagle Medium (DMEM; Cat#D6429) (New York, NY, USA); cOmpleteTM

  • We demonstrate the first use of the tyrosinase reaction to convert wholesample peptide for subsequent proteomic analysis, providing spectral evidence

Read more

Summary

Introduction

The mechanisms of L-DOPA-induced neurodegeneration include induction of oxidative stress and the misincorporation of L-DOPA into proteins in place of L-tyrosine, resulting in protein misfolding and the formation of proteolysis-resistant aggregates [3,5,7,17,18,19]. Protein-bound DOPA (PB-DOPA) can form via several mechanisms, including direct incorporation of free L-DOPA in place of tyrosine into a growing polypeptide chain [21]. It is known that free L-DOPA can induce oxidative stress, resulting in ROS generation via interaction with iron and copper to produce Fenton reaction products [27], which leads to further hydroxylation of free or protein incorporated tyrosine, thereby producing free and PB-DOPA [5,22]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call