Abstract
The advancements in the multimedia technologies result in the growth of the image databases. To retrieve images from such image databases using visual attributes of the images is a challenging task due to the close visual appearance among the visual attributes of these images, which also introduces the issue of the semantic gap. In this article, we recommend a novel method established on the bag-of-words (BoW) model, which perform visual words integration of the local intensity order pattern (LIOP) feature and local binary pattern variance (LBPV) feature to reduce the issue of the semantic gap and enhance the performance of the content-based image retrieval (CBIR). The recommended method uses LIOP and LBPV features to build two smaller size visual vocabularies (one from each feature), which are integrated together to build a larger size of the visual vocabulary, which also contains complementary features of both descriptors. Because for efficient CBIR, the smaller size of the visual vocabulary improves the recall, while the bigger size of the visual vocabulary improves the precision or accuracy of the CBIR. The comparative analysis of the recommended method is performed on three image databases, namely, WANG-1K, WANG-1.5K and Holidays. The experimental analysis of the recommended method on these image databases proves its robust performance as compared with the recent CBIR methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.