Abstract

The geological Storage of CO2 together with the recovery of methane gas from methane hydrate reservoirs in permafrost and sub-marine areas is promised a strategy towards overcoming climate change and energy supply. The major challenge in carbon capture and storage (CCS) is the difficulty in removing and capturing CO2 from other components of air mainly nitrogen, covering the main cost in CCS. In this study, a novel economical technique, without CO2 capture process, based on direct injection of flue gas from coal-fired power plants (14 mol% CO2, and 86 mol% N2) into gas hydrate reservoirs was investigated at bulk conditions. Experiments were conducted at different typical hydrate reservoir temperatures (278.2 K, and 283.2 K) and different ratio of flue gas to initiated methane hydrate. The efficiency of both CO2 storage and methane recovery were investigated by measuring the gas composition change during step-wise depressurization of system using gas chromatography. Methane recovery was induced by flue gas injection, shifting the methane hydrate phase boundary due to driving force of changed Vapour phase composition. In addition, injected CO2 was sequestrated as different types of hydrate. Finally, it’s concluded that CO2 storage efficiency is dependent on thermodynamic condition of the experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call