Abstract

In this paper, an effective method is proposed for breast mass segmentation using a superpixel generation and curve evolution method. The simple linear iterative clustering method and density-based spatial clustering of applications with noise method are applied to generate superpixels in mammograms at first. Thereafter, a region of interesting (ROI) that contains the breast mass is built on the superpixel generation results. Finally, the image patch and the position of the manual labeled seed are used to build the prior knowledge for the level set method driven by the local Gaussian distribution fitting energy and evolve the curve to capture the edge of breast mass in ROI. Experimental results on mammogram data set demonstrate that the proposed method shows superior performance in contrast to some well-known methods in breast mass segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.