Abstract

Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human hearing system. Methods: In this paper, model-based signal processing is proposed to estimate the effective parameters of ABR signals. In this process, the biological parameters of the signal are assessed by utilizing a Finite Impulse Response (FIR) adaptive filter in which its adaptation procedure is performed based on the correntropy concept. The proposed method is applied on a set of ABR signals recorded in response to three stimuli of /da/, /ba/, and /ga/, and then its performances are compared with an existing state-of-the-art technique. Results: The results show that the proposed method can significantly increase the accuracy of estimating the parameters in stable stimulations (/da/, /ba/) for major positive and negative peaks. This improvement is more significant (up to 2-3 times) for /ba/ stimulus and especially in major positive peaks. However, in other peaks, the improvements also occurred in smaller amounts. However, for unstable stimuli (/ga/), no significant improvement was achieved. Discussion: Increasing the accuracy performance of the proposed method for detecting the stable stimuli (while its performance remains unchanged) for detecting unstable stimuli indicates its effectiveness in automated clinical analysis of ABR signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.