Abstract

In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.