Abstract

Background and Objectives: In recent decades, due to the effect of the short channel, the use of CMOS transistors in the nanoscale has become a major concern. One option to deal with this issue is the use of nano-transistors. Methods: Using nano-transistors and multi-valued logic (MVL) can reduce the level of chips and connections and have a direct impact on power consumption. The present study reports the design of a new method of Multiplexers (MUXs) based on quaternary logic and transistors of carbon nanotubes (CNTFET) and having a new look at the layout and use of MUXs. Results:The use of special rotary functions and unary operators in Quaternary logic in the design of MUXs reduced the number of CNTFETs from 27% to 54%. Also, the use of MUXs in the Adder structure resulted in a 54% reduction in Power Delay Product (PDP) and a 17.5% to 85.6% reduction in CNTFET counts. Conclusion: The simulated results display a significant improvement in the fabrication of Adders, average power consumption, speed, and PDP compared to the current best-performing techniques in the literature. The proposed operators and circuits were evaluated under various operating conditions. The results show the stability of the proposed circuits.======================================================================================================Copyrights©2020 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.======================================================================================================

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.