Abstract

Diptera insects have the characteristics of spreading diseases and destroying forests. There are similarities among different species, which makes it difficult to identify a Diptera insect. Most traditional convolutional neural networks have large parameters and high recognition latency. Therefore, they are not suitable for deploying models on embedded devices for classification and recognition. This paper proposes an improved neural architecture based on differentiable search method. First, we designed a network search cell by adding the feature output of the previous layer to each search cell. Second, we added the attention module to the search space to expand the searchable range. At the same time, we used methods such as model quantization and limiting the ReLU function to the ReLU6 function to reduce computer resource consumption. Finally, the network model was transplanted to the NVIDIA Jetson Xavier NX embedded development platform to verify the network performance so that the neural architecture search could be organically combined with the embedded development platform. The experimental results show that the designed neural architecture achieves 98.9% accuracy on the Diptera insect dataset with a latency of 8.4 ms. It has important practical significance for the recognition of Diptera insects in embedded devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call