Abstract
In this article, a novel technique is proposed, namely rank-based multi-objective antlion optimization (RMOALO), and applied to optimize the performance of the energy harvesting cognitive radio network (EHCRN). The original selection method in multi-objective antlion optimizer (MOALO) is suitably changed to improve the algorithm, thus reaching the optimal solution for the problem. The proposed technique shows considerable performance improvement over the method used in the multi-objective antlion optimizer (MOALO). The performance of the proposed RMOALO is demonstrated on five benchmark mathematical functions and compared to multi-objective particle swarm optimization (MOPSO), multi-objective moth flame optimization (MOMFO), MOALO-Tournament, and MOALO-Roulette. The simulation results show an improved convergence of RMOALO and find the optimal solution to the throughput maximization problem. We show that RMOALO provides 16.33 % improved average throughput with the optimal value of sensing duration for the varying amount of harvested energy compared to MOPSO, MOMFO, MOALO-Roulette, and MOALO-Tournament.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.