Abstract

Differential evolution (DE) represents a class of population-based optimization techniques that uses differences of vectors to search for optimal solutions in the search space. However, promising solutions/regions are not adequately exploited by a traditional DE algorithm. Memetic computing has been popular in recent years to enhance the exploitation of global algorithms via incorporation of local search. This paper proposes a new memetic framework to enhance DE algorithms using Alopex Local Search (MFDEALS). The novelty of the proposed MFDEALS framework lies in that the behavior of exploitation (by Alopex local search) can be controlled based on the DE global exploration status (population diversity and search stage). Additionally, an adaptive parameter inside the Alopex local search enables smooth transition of its behavior from exploratory to exploitative during the search process. A study of the important components of MFDEALS shows that there is a synergy between them. MFDEALS has been integrated with both the canonical DE method and the adaptive DE algorithm L-SHADE, leading to the MDEALS and ML-SHADEALS algorithms, respectively.Both algorithms were tested on the benchmark functions from the IEEE CEC’2014 Conference. The experiment results show that Memetic Differential Evolution with Alopex Local Search (MDEALS) not only improves the original DE algorithm but also outperforms other memetic DE algorithms by obtaining better quality solutions. Further, the comparison between ML-SHADEALS and L-SHADE demonstrates that applying the MFDEALS framework with Alopex local search can significantly enhance the performance of L-SHADE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call