Abstract

A membrane-anchored cytochrome c-550, which is highly expressed in obligately alkaliphilic Bacillus clarkii K24-1U, was purified and characterized. The protein contained a conspicuous sequence of Gly(22)-Asn(34), in comparison with the other Bacillus small cytochromes c. Analytical data indicated that the original and lipase-treated intermediate forms of cytochrome c-550 bind to fatty acids of C(15), C(16) and C(17) chain lengths and C(15) chain length, respectively, and it was considered that these fatty acids are bound to glycerol-Cys(18). Since there was a possibility that the presence of a diacylglycerol anchor contributed to the formation of dimeric states of this protein (20 and 17 kDa in SDS-PAGE), a C18M (Cys(18) --> Met)-cytochrome c-550 was constructed. The molecular mass of the C18M-cytochrome c-550 was determined as 15 and 10 kDa in SDS-PAGE and 23 kDa in blue native PAGE. The C18M-cytochrome c-550 bound with or without Triton X-100 formed a tetramer as the original cytochrome c-550 bound with Triton X-100, as determined by gel filtration. The midpoint redox potential of cytochrome c-550 as determined by redox titration was +83 mV, while that determined by cyclic voltammetric measurement was +7 mV. The above results indicate that cytochrome c-550 is a novel cytochrome c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.