Abstract

We previously isolated three extracellular endogenous enzymes from a Streptomyces albogriseolus mutant strain which were targets of Streptomyces subtilisin inhibitor (SSI) (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In the present study, of the three enzymes the largest one, with a molecular mass of 45 kDa (estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis), termed SAM-P45, has been characterized in detail. The entire gene encoding SAM-P45 was cloned as an approximately 10-kb fragment from S. albogriseolus S-3253 genomic DNA into an Escherichia coli host by using a shuttle plasmid vector. The amino acid sequence corresponding to the internal region of SAM-P45, deduced from the nucleotide sequence of the gene, revealed high homology, particularly in three regions around the active-site residues (Asp, His, and Ser), with the amino acid sequences of the mature domain of subtilisin-like serine proteases. In order to investigate the enzymatic properties of this protease, recombinant SAM-P45 was overproduced in Streptomyces coelicolor by using a strong SSI gene promoter. Sequence analysis of the SAM-P45 gene and peptide mapping of the purified SAM-P45 suggested that it is synthesized as a large precursor protein containing a large C-terminal prodomain (494 residues) in addition to an N-terminal preprodomain (23 and 172 residues). A high proportion of basic amino acids in the C-terminal prodomain was considered to serve an element interactive with the phospholipid bilayer existing in the C-terminal prodomain, as found in other membrane-anchoring proteases of gram-positive bacteria. It is noteworthy that SAM-P45 was found to prefer basic amino acids to aromatic or aliphatic amino acids in contrast to subtilisin BPN', which has a broad substrate specificity. The hydrolysis by SAM-P45 of the synthetic substrate (N-succinyl-L-Gly-L-Pro-L-Lys-p-nitroanilide) most preferred by this enzyme was inhibited by SSI, chymostatin, and EDTA. The proteolytic activity of SAM-P45 was stimulated by the divalent cations Ca2+ and Mg2+. From these findings, we conclude that SAM-P45 interacts with SSI and can be categorized as a novel member of the subtilisin-like serine protease family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.