Abstract

We discuss a novel mechanism to set up a gravity dual of FFLO states in strongly coupled superconductors. The gravitational theory utilizes two U(1) gauge fields and a scalar field coupled to a charged AdS black hole. The first gauge field couples with the scalar sourcing a charge condensate below a critical temperature, and the second gauge field provides a coupling to spin in the boundary theory. The scalar is neutral under the second gauge field. By turning on an interaction between the Einstein tensor and the scalar, it is shown that, in the low temperature limit, an inhomogeneous solution possesses a higher critical temperature than the homogeneous case, giving rise to FFLO states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.