Abstract

In this study, we have investigated the mechanism of ADP-induced relaxation of porcine coronary artery (PCA) rings. The P2Y receptor agonists ADP and ADPbetaS produced concentration-dependent relaxation of endothelium-denuded PCA smooth muscle with pD2 values of 5.3 and 4.9, respectively. RT-polymerase chain reaction (RT-PCR) and immunoblotting demonstrated mRNA and protein expression of P2Y1 and A2A adenosine receptors in the PCA. The nonselective P2 antagonist PPADS or the P2Y1-selective antagonist MRS2179 failed to alter ADP- or ADPbetaS-induced relaxations. Relaxations to ADP were, however, blocked by the A2A adenosine receptor-selective antagonists ZM241385 and SCH58261 (apparent pK(B) values of 9.2 and 8.9, respectively). We excluded roles for direct occupancy of A2A adenosine receptors by ADP or ADPbetaS as well as metabolism to adenosine as mechanisms for ADP-evoked relaxations. However, ADP responses were significantly enhanced in the presence of the ENT1 nucleoside transporter inhibitors dipyridamole and NBTI and were significantly inhibited by adenosine deaminase, indicating a role for extracellular adenosine. Suprafusion of [3H]-adenine-labeled PCA segments showed that ADP induced the release of a number of purines, including adenosine. These data suggest that ADP mediates relaxation of the PCA via a novel mechanism that involves adenine nucleotide-evoked adenosine release and the subsequent activation of A2A receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call