Abstract

RyeA/SraC is a cis-encoded small RNA (sRNA), which act as an anti-toxin to RpoS-regulated RyeB toxin in Escherichia coli. Ectopic expression of RyeA was reported to diminish the RyeB accumulation by serving as a RNA trap. Lower abundance of RyeA in the early exponential growth phase turned out to be the outcome of its degradation by RNase BN/Z. In the current study, we show that RyeA is an acid stress inducible sRNA, and global stress responsive factor RpoS appeared to be inessential in RyeA induction. Although, ryeB-pphA dicistronic transcript at low pH condition was stimulated by ∼4-fold, however, RyeB population was found to be decreased by > 50% under the same condition by the decoy action of enhanced RyeA accumulation. Investigation of the mechanism of RyeA induceduction at low pH in the exponential phase, revealed that RNase BN/Z, which catabolizes RyeA in the exponential phase, appeared to be highly sensitive to low pH stress. Both mRNA and protein level of RNase BN transpired to be decreased to <10% of their initial population. The expression of RyeA under acid stress is regulated by a feed-forward mechanism to normalize the RyeB profusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.