Abstract

Superoxide dismutases (SODs), especially thermostable SODs, are widely applied in medical treatments, cosmetics, food, agriculture, and other industries given their excellent antioxidant properties. A novel thermostable cambialistic SOD from Geobacillus thermodenitrificans NG80-2 exhibits maximum activity at 70°C and high thermostability over a broad range of temperatures (20–80°C). Unlike other reported SODs, this enzyme contains an extra repeat-containing N-terminal domain (NTD) of 244 residues adjacent to the conserved functional SODA domain. Deletion of the NTD dramatically decreased its optimum active temperature (OAT) to 30°C and also impaired its thermostability. Conversely, appending the NTD to a mesophilic counterpart from Bacillus subtilis led to a moderately thermophilic enzyme (OAT changed from 30 to 55°C) with improved heat resistance. Temperature-dependant circular dichroism analysis revealed the enhanced conformational stability of SODs fused with this NTD. Furthermore, the NTD also contributes to the stress resistance of host proteins without altering their metal ion specificity or oligomerisation form except for a slight effect on their pH profile. We therefore demonstrate that the NTD confers outstanding thermostability to the host protein. To our knowledge, this is the first discovery of a peptide capable of remarkably improving protein thermostability and provides a novel strategy for bioengineering thermostable SODs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.