Abstract

Cleavage of the hemagglutinin (HA) molecule by proteases is a prerequisite for the infectivity of influenza A viruses. Here, we describe a novel mechanism of HA cleavage for a descendant of the 1918 pandemic strain of human influenza virus. We demonstrate that neuraminidase, the second major protein on the virion surface, binds and sequesters plasminogen, leading to higher local concentrations of this ubiquitous protease precursor and thus to increased cleavage of the HA. The structural basis of this unusual function of the neuraminidase molecule appears to be the presence of a carboxyl-terminal lysine and the absence of an oligosaccharide side chain at position 146 (N2 numbering). These findings suggest a means by which influenza A viruses, and perhaps other viruses as well, could become highly pathogenic in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.