Abstract
Gas sensors based on metal oxide semiconductors (MOS) have been widely used for the detection and monitoring of flammable and toxic gases. In this paper, p-type Cr2O3 and Ti-doped Cr2O3 (CTO) thin films were synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method. Detailed analysis of the thin films deposited, including structural information, their elemental composition, oxidation state, and morphology, was investigated using XRD, Raman analysis, SEM, and XPS. All the gas sensors based on pristine Cr2O3 and CTO exhibited a reversible response and good sensitivity to isobutylene (C4H8) and ammonia (NH3) gases. Doping Ti into the Cr2O3 lattice improves the response of the CTO-based sensors to C4H8 and NH3. We describe a novel mechanism for the gas sensitivity of p-type metal oxides based on variations in the oxygen vacancy concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.