Abstract

This paper proposes a novel structural damage identification approach coupling the Mayfly algorithm (MA) with static displacement-based response surface (RS). Firstly, a hybrid optimal objective function is established that simultaneously considers the sensitivity-based residual errors of static damage identification equation and the static displacement residual. In the objective function, the static damage identification equation is addressed by the Tikhonov regularization technique. The MA is subsequently employed to conduct an optimal search and pinpoint the location and intensity of damages at the structural element level. To handle the inconformity of the static loading points and the measurement points of displacements, the model reduction and displacement extension techniques are implemented to reconstruct the static damage identification equation. Meanwhile, the static displacement-based RS is constructed to calculate the displacement residual in the hybrid objective function, thereby circumventing the time-consuming finite element calculations and improving computational efficiency. The identification results of the numerical box girder bridge demonstrate that the proposed method outperforms the particle swarm optimization, differential evolution, Jaya and whale optimization algorithms about both convergence rate in optimal searching and identification accuracy. The proposed method enables more accurate damage identification compared to methods solely based on the indicator of the residual of static damage identification equations or displacement residual. The results of identifying damage in the 21 element-truss structure and the static experiments on identifying damage in an aluminum alloy cantilever beam confirm the high efficiency of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call