Abstract

A novel matrix protein, designated as p10 because of its apparent molecular mass of 10 kDa, was isolated from the nacreous layer of pearl oyster (Pinctada fucata) by reverse-phase high-performance liquid chromatography. In vitro crystallization experiments showed that p10 could accelerate the nucleation of calcium carbonate crystals and induce aragonite formation, suggesting that it might play a key role in nacre biomineralization. As nacre is known to contain osteogenic factors, two mineralogenic cell lines, MRC-5 fibroblasts and MC3T3-E1 preosteoblasts, were used to investigate the biological activity of p10. The results showed that p10 could increase alkaline phosphatase activity, an early marker of osteoblast differentiation, while the viability of MRC-5 and MC3T3-E1 remained unchanged after treatment of p10. Taken together, the findings led to identification of a novel matrix protein from the nacre of P. fucata that plays a role in both the mineral phase and in the differentiation of the cells involved in biomineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call