Abstract

Sesame oil nanofibers (diameter min: 286 max: 656nm), starting thermal degradation at 60 °C, were successfully obtained using the electrospinning technique in Türkiye. The distance, high voltage, and flow rate in electrospinning parameters were defined as 10 cm, 25 kV, and 0.065 mL/min. Mesophilic, psychrophilic bacteria, and yeast & molds counts of control group samples were higher (up to 1.21 log CFU/g) than those of salmon and chicken meat samples treated with sesame oil nanofibers. Thiobarbituric acid (TBA) value in control salmon meat samples stored for 8 days was defined between 0.56 and 1.48 MDA/kg (increase: 146%). However, the rise in TBA for salmon samples treated with sesame oil nanofibers was 21%. Also, nanofiber application for chicken samples limited the rapid oxidation up to 51.51% compared to control samples on the 8th day (p < 0.05). b* value (decline: 15.23 %) associated with rapid oxidation of the control group in salmon samples was more rapidly decreased than that of fish samples treated with sesame-nanofibers (b*: 12.01%) (p < 0.05). Chicken fillets b* values were more stable compared to control chicken meat samples for 8 days. Sesame oil-nanofiber application did not adversely affect the L* value color stability of all meat samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call