Abstract

Transparent ultrasound transducer (TUT) technology allows easy co-alignment of optical and acoustic beams in the development of compact photoacoustic imaging (PAI) devices with minimum acoustic coupling. However, TUTs suffer from narrow bandwidth and low pulse-echo sensitivity due to the lack of suitable transparent acoustic matching and backing layers. Here, we studied translucent glass beads (GB) in transparent epoxy as an acoustic matching layer for the transparent lithium niobate piezoelectric material-based TUTs (LN-TUTs). The acoustic and optical properties of various volume fractions of GB matching layers were studied using theoretical calculations, simulations, and experiments. These results demonstrated that the GB matching layer has significantly enhanced the pulse-echo sensitivity and bandwidth of the TUTs. Moreover, the GB matching layer served as a light diffuser to help achieve uniform optical fluence on the tissue surface and also improved the photoacoustic (PA) signal bandwidth. The proposed GB matching layer fabrication is low cost, easy to manufacture using conventional ultrasound transducer fabrication tools, acoustically compatible with soft tissue, and minimizes the use of the acoustic coupling medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.