Abstract

This paper proposes a novel mask estimation method for missing-feature reconstruction to improve speech recognition performance in various types of background noise conditions. A conventional mask estimation method based on spectral subtraction degrades performance, due to incorrect estimation of the noise signal which fails to accurately represent the variations of background noise during the incoming speech utterance. The proposed mask estimation method utilizes a Posterior-based Representative Mean (PRM) estimate for determining the reliability of the input speech spectral components, which is obtained as a weighted sum of the mean parameters of the speech model using the posterior probability. To obtain the noise-corrupted speech model, a model combination method is employed, which was proposed in our previous study for a feature compensation method. Experimental results demonstrate that the proposed mask estimation method provides more separable distributions for the reliable/unreliable component classifier compared to the conventional mask estimation method. The recognition performance is evaluated using the Aurora 2.0 framework over various types of background noise conditions and the CU-Move real-life in-vehicle corpus. The performance evaluation shows that the proposed mask estimation method is considerably more effective at increasing speech recognition performance in various types of background noise conditions, compared to the conventional mask estimation method which is based on spectral subtraction. By employing the proposed PRM-based mask estimation for missing-feature reconstruction, we obtain +23.41% and +9.45% average relative improvements in word error rate for all four types of noise conditions and CU-Move corpus, respectively, compared to conventional mask estimation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.