Abstract

Low temperature is among the critical environmental factors that limit soybean production. To elucidate the genetic basis for chilling tolerance and identify useful markers, we conducted quantitative trait loci (QTL) analysis of seed-yielding ability at low temperature in soybean (Glycine max), using artificial climatic environments at usual and low temperatures and recombinant inbred lines derived from a cross between two contrasting cultivars in terms of chilling tolerance. We identified a QTL of a large effect (LOD > 15, r (2) > 0.3) associated with seed-yielding ability only at low temperature. The QTL was mapped near marker Sat_162 on linkage group A2, where no QTL for chilling tolerance has previously been identified. The tolerant genotype did not increase the pod number but maintained the seed number per pod and single seed weight, namely, the efficiency of seed development at low temperature. The effect of the QTL was confirmed in a segregating population of heterogeneous inbred families, which provided near-isogenic lines. The genomic region containing the QTL also influenced the node and pod numbers regardless of temperature condition, although this effect was not primarily associated with chilling tolerance. These results suggest the presence of a new major genetic factor that controls seed development specifically at low temperature. The findings will be useful for marker-assisted selection as well as for understanding of the mechanism underlying chilling tolerance in reproductive organs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.