Abstract

In this study, a novel biochar-based compound fertilizer (BCF) was synthesized with maize straw biomass, diatomite, triple superphosphate and urea at different temperatures (300°C, 450°C, 600°C) and mixture proportions (5:1:1:x and 10:1:1:x). An investigation was conducted into the effects of BCF at low application rates on the immobilization of available cadmium, soil fertility and maize growth. The lab incubation experiments showed that the low doses of BCF (B5PNx and B10PNx) contributed to a significant reduction of the Cd availability in soil, with the highest reduction rate of available Cd up to 44.13%. Field experiments demonstrated that the low doses ( < 0.1%) of BCF(especially for B5PN600)led to the improvement of soil fertility and maize growth (including maize yield) and the significant reduction of Cd contents in maize grains. The increase of pyrolysis temperature could enhance the biochar adsorption capacity for Cd2+ by increasing both specific surface areas and total pore volume. The modification of urea, diatomite and triple superphosphate played a vital role on cadmium immobilization, soil improvement and maize growth by forming porous adsorption, precipitates or complexation with the increase of functional groups, as well as supplementation of N, P, Si nutrients. This study suggested that the biochar-based compound fertilizer (BCF with a mixture ratio of 5:1:1:x) produced at 600°C could be served as a promising and eco-friendly remediation agent for the arable soils polluted with Cd, with reduction of chemical fertilizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.