Abstract

The localized f-electrons enrich the magnetic properties in rare-earth-based intermetallics. Among those, compounds with heavier 4d and 5d transition metals are even more fascinating because anomalous electronic properties may be induced by the hybridization of 4f and itinerant conduction electrons primarily from the d orbitals. Here, we describe the observation of trivalent Yb3+ with S = 1/2 at low temperatures in YbxPt5P, the first of a new family of materials. YbxPt5P (0.23 ≤ x ≤ 0.96) phases were synthesized and structurally characterized. They exhibit a large homogeneity width with the Yb ratio exclusively occupying the 1a site in the anti-CeCoIn5 structure. Moreover, a sudden resistivity drop could be found in YbxPt5P below ∼0.6 K, which requires further investigation. First-principles electronic structure calculations substantiate the antiferromagnetic ground state and indicate that two-dimensional nesting around the Fermi level may give rise to exotic physical properties, such as superconductivity. YbxPt5P appears to be a unique case among materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.