Abstract

In this Letter we have studied a new form of non-commutative (NC) phase space with an operatorial form of noncommutativity. A point particle in this space feels the effect of an interaction with an “ internal ” magnetic field, that is singular at a specific position θ −1 . By “internal” we mean that the effective magnetic fields depends essentially on the particle properties and modifies the symplectic structure. Here θ is the NC parameter and induces the coupling between the particle and the “internal” magnetic field. The magnetic moment of the particle is computed. Interaction with an external physical magnetic field reveals interesting features induced by the inherent fuzziness of the NC phase space: introduction of non-trivial structures into the charge and mass of the particle and possibility of the particle dynamics collapsing to a Hall type of motion. The dynamics is studied both from Lagrangian and symplectic (Hamiltonian) points of view. The canonical (Darboux) variables are also identified. We briefly comment, that the model presented here, can play interesting role in the context of (recently observed) real space Berry curvature in material systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.