Abstract

Parts and cutting tools with large structural flexibility experience both forced and chatter vibrations during machining, resulting in poor surface finish or damage to the machine. This paper presents the design principles of a novel 3 degrees of freedom linear magnetic actuator which increases the damping and static stiffness of flexible structures during machining. The proposed actuator can deliver 248N force in two radial (x, y) directions and 34N×m (torque) in torsional (θ) direction up to 850Hz. The force and torque reduces to 107N and 14.5N×m at 2000Hz, hence it can actively damp a wide range of structural modes. The magnetic force is linearized with respect to the input current using magnetic configuration design strategy. Loop shaping controllers are designed for active damping of boring bar vibrations. The static and dynamic stiffnesses of the boring bar were considerably increased with the designed actuator, leading to a significant increase in chatter-free material removal rates during cutting tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.