Abstract

BackgroundApplication of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model.MethodsMulti-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability.ResultsBoth repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91.ConclusionThe novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.

Highlights

  • Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition

  • Non-invasive inshoe foot kinematics remain delicate to quantify as certain challenges arise: the difficulty to apply regular markers due to the fact that the skin is not directly accessible, the necessity for an adequate shoe which fits various foot morphologies and the need for adequate repeatability throughout a repeated measure condition

  • Since accelerations during walking remain low, orthogonal forces applied onto the magnets are inferior to the magnet forces, causing that the marker wands stay fixated into their baseplates throughout measurements

Read more

Summary

Introduction

Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. Multi-segment foot kinematic analyses have gained enormous popularity in the last ten years since they provide a more detailed analysis of foot kinematics compared to single segment models [1, 2]. Non-invasive inshoe foot kinematics remain delicate to quantify as certain challenges arise: the difficulty to apply regular markers due to the fact that the skin is not directly accessible, the necessity for an adequate shoe which fits various foot morphologies and the need for adequate repeatability throughout a repeated measure condition. Eerdekens et al Journal of Foot and Ankle Research (2017) 10:38

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call