Abstract
In this study, a neuro-fuzzy-based machine learning method is developed to predict the multiaxial fatigue life of various metallic materials. First, the fuzzy inference system and neural network are combined to identify and capture the nonlinear mapping relationship between multiaxial fatigue damage parameters and fatigue life. Non-proportionality and phase differences are introduced to characterize different loading paths. Next, the Adam algorithm is employed to update the premise parameters of the original model to achieve fast and accurate convergence. Then, subtractive clustering is applied to extract fuzzy rules between input variables and output for more efficient prediction. Moreover, the hyperparameters in the proposed model are automatically optimized by the adaptive opposition slime mould algorithm to obtain the optimal model. The predictive performance of the proposed model is verified by fatigue experimental data for six materials in published literature, which indicates that the proposed model can effectively predict the fatigue life of various materials under different loading paths. Meanwhile, compared with six classical machine learning models, it is found that the proposed model has better predictive performance and extrapolation capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.