Abstract
During the Covid-19 pandemic, the world was under lockdown, and everyone was inside their home. There are so many restrictions for going out, so many companies introduced online shopping, and this online shopping helped more people; the e-commerce platform also increased their revenue; at the same time, online fraud has also risen worldwide. Everyone adopted online shopping during the pandemic. In 2019 India's 2019 credit/debit card fraud rate was 365, according to the National Crime Record Bureau. The developed countries are the highest rate of credit card fraud in 2020 compared to India; for that reason, we have to implement mechanisms that can detect credit theft. The machine learning algorithm with the R program will play an essential role in credit card fraud detection. The following machine learning algorithm will have used for credit card fraud, Random Forest, Logistic regression, Decision trees, and Gradient Boosting Classifiers. The European bank dataset used in our research and the dataset size is 284808. Here we used two classes, the first one is called the positive class (fraud transactions), and the second one is the negative class (genuine transactions). The final result will show us the outperforms of our proposed system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.