Abstract
Analytical techniques for detection and quantitation of tetracyclines in food products are greatly in demand. In this study, a novel electrochemical aptasensor was designed for ultrasensitive and selective detection of tetracyclines, based on M-shape structure of aptamer (Apt)-complementary strands of aptamer (CSs) complex, exonuclease I (Exo I) and gold electrode. The aptasensor was developed to make a noticeable electrochemical difference in the absence and presence of tetracycline. In the absence of tetracycline, the M-shape structure, which acts as a gate and barrier for the access of redox probe to the surface of gold electrode remains intact, leading to a weak electrochemical signal. Upon addition of tetracycline, Apt leaves CSs, resulting in disassembly of M-shape structure and following the addition of Exo I, a strong electrochemical signal was observed. The developed analytical assay indicated high selectivity toward tetracycline with a limit of detection (LOD) as low as 450 pM. Moreover, the designed aptasensor was effectively used for the detection of tetracycline in milk and serum samples with LODs of 740 and 710 pM, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.